首页> >行业资讯

锂离子电池组过充燃烧爆炸特性

发布者:【浩博电池资讯】   发布时间:2022-08-10 21:08:10   点击量:370

浩博电池网讯:


作者:卓萍1图片朱艳丽2齐创3王聪杰2高飞4


单位:1.应急管理部天津消防研究所;2.北京理工大学爆炸科学与技术国家重点实验室;3.中国汽车技术研究中心有限公司;4.中国电力科学研究院,新能源与储能运行控制国家重点实验室


引用:卓萍,朱艳丽,齐创等.锂离子电池组过充燃烧爆炸特性[J].储能科学与技术,2022,11(08):2471-2479.


DOI:10.19799/j.cnki.2095-


4239.2022.0276


摘要为研究锂离子电池组的燃烧爆炸特性,本工作以铝壳方型锰酸锂电池及其电池组作为研究对象,采用2C电流恒流过充且设置较高截止电压,考察其热失控后燃烧爆炸特性。实验结果表明,锂离子电池单体过充774s后瞬时发生安全阀破裂、射流火和爆炸,距离爆心45cm处爆炸最大压强达到556kPa。由13个单体电池串联构成的电池组在不带BMS的情况下过充后依次发生安全阀破裂、射流火,局部发生爆炸,实验时形成多个压力峰值,距离爆心45cm处最大爆炸压强为915kPa。当锂离子电池组以6.5cm间距布置时,过充其中一个电池组可引发其他电池组发生燃烧,形成火灾蔓延。


关键词锂离子电池;过充;热失控;燃烧;爆炸


以锂离子电池为代表的电化学储能在智能电网、能源互联网中的应用贯穿整个电力系统,对构建以新能源为主体的新型电力系统、助力“双碳”目标实现发挥着重要作用。根据国家发展改革委、国家能源局发布的《“十四五”现代能源体系规划》(发改能源[2022]210号),“十四五”期间,我国将大力推进电源侧储能发展,优化布局电网侧储能,积极支撑用户侧储能多元化发展,拓宽储能应用场景,加快新型储能技术规模化应用。锂离子电池储能系统的应用也将随之得到快速发展,更多的百兆瓦级锂离子电池储能电站将并网运行。


然而,由于锂离子电池受自身物理化学性质制约,在热滥用、电滥用和机械滥用等条件下可能发生热失控,近年来国内外锂离子电池储能系统安全事故频发,引起社会广泛关注,锂离子电池本质安全提升及火灾危险性分析、储能场所安全风险评估、火灾防控技术、灭火系统研发等均成为研究热点。尤其是针对储能场所,如何合理进行消防设计和防爆设计,防止火灾扩散蔓延,减少火灾损失和人员伤亡,显得尤为重要。


本工作以锂离子电池及其串联组成的电池组作为研究对象,重点分析了在2C倍率恒流过充且高截止电压条件下单体电池、电池组的燃烧爆炸特性及火灾蔓延特征,相关研究结果可为锂离子电池储能场所火灾风险评估、消防设计提供技术支撑。


1实验


1.1?实验样品


实验电池和电池组分别选用星恒电源提供的标称容量为3.7V、13.5Ah的铝壳方形锰酸锂单体电池和标称容量为48V、13.5Ah的锰酸锂电池组。样品电池的初始荷电状态(SOC)为100%,有安全阀保护。实验电池组由13个锂离子单体电池串联组成,电池外壳采用聚乙烯(PE)塑料和丙烯腈-丁二烯-苯乙烯三元共聚(ABS)塑料包覆,外壳塑料材料燃烧性能满足GB8624—2012《建筑材料及制品燃烧性能分级》要求的B1级,未安装电池管理系统(BMS)。


1.2?实验工况


1.2.1?锂离子电池单体实验工况


在室温条件下,以27A(2C)电流对单体电池进行恒流过充,最高电压上限设置为10倍额定电压(37V)。当电池达到充电限制电压时,改为恒压充电,直到电池发生爆炸或燃烧。


实验现场选择在爆炸洞内,将样品电池采用水平放置的方式,放置在距地面50cm的支架上,如图1所示。电池两侧采用夹具固定,并采用一定厚度的隔热棉隔离电池和支架以减少热量损失。在爆炸洞外,用计算机程序远程控制IT6522A型充放电仪(南京艾德克斯公司)测试系统对样品电池做过充测试,记录其电流电压随时间的变化情况。在爆炸洞外观察孔处布置一架APXRX型高速摄影仪(日本Photron公司),记录样品电池的爆炸过程。采用5支直径为2cm、量程范围为0~1200℃的K型铠装热电偶(T1~T5)测量电池表面、烟气及火焰温度,其中T1位于电池表面中心位置;T2、T3、T4与电池上表面的距离均为5cm;T5距离电池上表面15cm。在距离电池安全阀约45cm处布置2个211B6型压力传感器(瑞士KISTLER公司,P1~P2),测定样品电池热失控后产生的压力波。


图1锂离子单体电池实验布置


1.2.2?单个锂离子电池组实验工况


在室温条件下,以27A(2C)电流对锂离子电池组进行恒流过充,最高电压上限设置为80V。


实验现场条件与锂离子单体电池实验条件相同,实验布置如图2所示。实验时采用8支热电偶(T1~T8)测量电池组表面壳体温度以及火焰温度。T1、T2、T3位于电池表面上,其中T2位于电池壳体中心处,向两侧偏移15cm分别为T1和T3,T1靠近接线端。T4、T5、T6、T7、T8与电池的最短距离分别为10cm、10cm、10cm、20cm、45cm。设置3个压力传感器(P1~P3)监测电池组热失控后的压力波。P1、P2、P3与电池的最短距离分别为45cm、45cm、30cm。


图2锂离子电池组实验布置


1.2.3?多个锂离子电池组实验工况


为了考察多个锂离子电池组在一定间距下相互引燃的情况,采用3个锂离子电池组在间距6.5cm的条件下开展实验,布置如图3所示。实验时将3个电池组放置于铁支架上,其中1号不带BMS的电池组水平放置,安全阀方向朝向2号电池组,2号、3号电池组侧立放置,安全阀方向朝上。采用4支热电偶测量电池表面温度及烟气、火焰温度。实验仍在爆炸洞内完成,在室温条件下,以27A(2C)电流对1号锂离子电池组进行恒流过充,最高电压上限设置为80V。


图3多组锂离子电池组实验布置


2实验结果与讨论


2.1?单体电池过充实验


2.1.1?燃烧爆炸行为


锂离子单体电池过充实验现象见图4。实验过程可大致分为3个阶段:第一阶段为电池壳体鼓胀变形阶段,从实验开始至743s时可见电池壳体变形,电池试样周边散逸少量白色烟气。这一阶段,过充仅导致电池内部材料发生各类反应并产生一定的气体,电池壳体内部压力增大导致电池出现外观鼓胀变形。少量白色烟气的产生主要是因为随着电池过充释放出一定的热量,导致电池外壳及不燃隔热材料等产生热分解。第二阶段射流火及爆炸阶段,持续时间仅为1s。实验进行至744s时安全阀打开,在1s时间内电池释放大量白色烟气、急剧喷射火焰并瞬时发生爆炸,形成巨大火球。由于实验最高电压上限设置为10倍额定电压(37V),在较高的截止电压过充下,电解质、电极以及集流体的电阻显著增大,电池动力学性能及热稳定性显著降低,内部化学反应增强。随着持续过充电池内部反应的加剧,产气量不断增大导致电池内部压力也急剧增大,仅安全阀破裂泄压难以实现电池内部和外部的平衡,因而发生电池壳体撕裂出现爆炸。电池内部热失控反应产生的可燃气体和电解液与空气混合后被引燃,形成初次射流火并伴随着爆炸形成了强烈的火球。第三阶段为稳定燃烧阶段,爆炸后能量得到泄放,支架上电池内部残余的电解液及可燃材料仍持续猛烈燃烧,火焰持续53s后完全熄灭。实验后观测图片可见,电芯中铜箔和铝箔表面的所有物质均已过火,电池爆裂位置并未发生在安全阀附近,而是在位于电池壳体约1/3处完全撕裂,进一步表明爆炸瞬间安全阀的破裂不足以实现电池壳体内外压力平衡,在744s时电池内部产气压力大大超过了安全阀设定的阈值。


图4锂离子单体电池过充实验照片


2.1.2?实验数据分析


单体电池试样过充实验温度、电压变化曲线如图5所示。


图5锂离子单体电池过充实验温度及电压变化曲线


电压方面,在第一阶段时电压从前期持续保持恒定,实验进行至587s时出现电压迅速升高,并在621s时出现第一个峰值16.5V,之后电压骤降至接近0V。结合试验现象可知,电压升高至极值时刻比电池爆炸发生早约123s,表明随着电池持续恒流过充,正负电极表面发生大量破损,已偏离常态电化学电位,正负电极无法维护有效的电荷收纳,转为大量分布在电极表面,表现出电容效应,即电荷越多,电压越高,因而电压达到极值16.5V;随着正负极接触短路,电压骤降至0V,此后电池内化学反应将更为剧烈,且持续时间达到123s,因而电池内部聚集能量较高,引发第二阶段射流火和爆炸。第二阶段电压再次升高,表明电池爆炸后的残余物成为了一个带有电阻的导电性混合物,随着燃烧的持续在较高电压上持续24s后,正负极再次接触短路,电压降至0V。


温度方面,第一阶段随着过充的持续,电池表面温度缓慢升高,电池电压降至0V时对应电池表面温度为115℃,考虑热传递损失,电池内部反应体系温度相对更高,但此时电池表面升温速率仍保持在12℃/min左右,未发生明显突变。第二阶段电池爆炸瞬间,T1位置温度从142℃迅速升至223℃,可能是爆炸发生速度过快热电偶未能及时感应到最高温度所致。由于实验时热电偶布置为水平方向,整个过程中燃烧为垂直方向,因此各测点温度均偏低,T3测点最高温度为72℃,其余位置最高温度均不高于50℃。


单体电池试样过充实验过程中测得的压力波曲线见图6,实验中测到的距离爆心45cm处最大压强达到556kPa。根据实验观测分析,电池爆炸裂口方向正对P1传感器压力面,因而此处测到的压力波最大,表明电池单体爆炸事故的破坏力与电池开口方向密切相关。压力波数据分析可知,容量为13.5Ah的锂离子电池爆炸可导致周边人员发生一定程度的损伤[18]。


图6锂离子单体电池爆炸压力波曲线


2.2?单个电池组过充实验


2.2.1?燃烧爆炸行为


锂离子电池组过充实验现象如图7所示。


图7锂离子电池组过充实验照片


锂离子电池组燃烧爆炸行为主要可分为3个阶段:第一阶段为电池开始过充至2401s首个电池安全阀破裂之前,这一阶段电池组外观未见明显变化,电池受到整包电池外壳及电池之间的约束,形变在一定程度上受限。此时多个电池在过充过程中发生反应并产气,但尚未达到安全阀破裂的阈值。第二阶段为2401~2729s,全部13个电池安全阀依次破裂,过程中出现明显射流火、局部爆炸并喷溅、燃烧等现象。首个电池安全阀破裂后4s,靠近充电口位置的电池组塑料外壳被引燃,随着外部火势逐渐增大,23s后第二个电池安全阀破裂,形成明显的射流火,2456s时第三个电池安全阀破裂并伴随有局部爆炸,部分燃烧的物质喷溅出来。之后持续听到安全阀破裂的声音,看到射流火、瞬时爆炸、猛烈燃烧等现象,直至所有电池安全阀全部破裂。出现这一现象的原因在于,持续过充状态下,电池组内每一块单体电池受到内部剧烈化学反应和外部火焰高温加热的双重作用,产气量不断增大,同时电池之间相互挤压受到电池组塑料外壳空间限制,进一步推动了安全阀的破裂及电池内部能量的释放。第三阶段为2729s至试验结束,最后一块电池安全阀破裂后,电池组整体呈现稳定燃烧状态,塑料外壳基本烧尽,电池内部的可燃物及反应产生的可燃物质完全燃烧。实验后观察可见,部分电池铝壳已经发生撕裂,出现正负极金属材料裸露的情况,表明实验时反应非常剧烈,形成了爆炸,其余部位的部分电池仅出现鼓胀形变,保留了完整的安全阀孔洞。


2.2.2?实验数据分析


锂离子电池组试样过充温度、电压变化曲线如图8所示。


图8锂离子电池组过充实验温度与电压变化曲线


电压方面,第一阶段,由于该电池组试样前期做了过放电的试验,电池组状态不同于正常的电池组。此时,电池组内的电池由于过放造成了内部电化学体系的破坏,导致电池欧姆内阻提高,使得电池组的欧姆电阻(1.23Ω)大于常规电池组的欧姆电阻(毫欧级别),所以,在恒流充电的瞬间,电池组电压明显上升,从10.7V到了44V。在40min之前,电池组首先从过放电状态转变为满电态,此时电池组电压表现平稳,幅度相对较小,然后从满电态转变为过充电状态,此时电压明显上升,幅度逐渐变大。第二阶段在实验进行40min以后,电池组电压开始剧烈波动,最低电压接近20V,这表明电池内部结构已经发生显著变化,电池发生部分内短路,释放大量热量,电池内部压力迅速提高,导致泄压阀打开。而后电池完全内短路,电压为0V,温度进一步升高,电池热失控。


温度方面,第一阶段,实验开始至40min时电池组表面温度缓慢上升,温度从初始的16.3℃升至48.8℃,升温速率仅为0.8℃/min,表明这一阶段电池过充时内部反应产热量不大,单体电池过充产生的热量主要在电池组内部的电池之间发生了热传递。第二阶段伴随着电池组安全阀破裂后电池表面发生了燃烧和喷射火,电池组表面温度也两次快速上升,第一次在40~41.5min时温度迅速从48.8℃上升至200℃,主要表现为电池组外壳材料被引燃初期,塑料在高温下发生了热解和熔化。第二次200℃左右温度下持续至44min后再次迅速升高,并于45.9min时达到最高温度809℃,此时外壳材料和电池均猛烈燃烧,各测点温度均达到最高值。峰值温度的出现时间较电压峰值的出现时间晚5.9min,表明电压的急剧变化可作为电池组热失控和火灾预警的重要参数之一。第三阶段随着燃烧的逐渐减弱,电池温度缓慢下降。


锂离子电池组爆炸压力波曲线如图9所示。实验过程中,电池组发生了多次电池射流火,形成了多次压力峰值,距离爆心45cm处最高测量压强达到915kPa。这一数值约为单只锂离子电池压力峰值的1.6倍,且短期内频次较高,对周边人员和构件可能造成的损害更大。


图9锂离子电池组爆炸压力波曲线


2.3?多组锂离子电池组实验


2.3.1?燃烧爆炸行为


本组实验中,每个电池组燃烧爆炸依次进行,实验现象如图10所示。1号电池组中电池安全阀破裂时间集中于39.1~46.3min之间。40.6min时电池组塑料外壳起火,之后出现多次射流火、爆炸,火势逐渐增大,46.1min时1号电池组燃烧最为猛烈,形成一个较大的火球。此后1号电池火势逐渐减小。由于1号电池组安全阀正对2号电池组,因此电池射流火及燃烧均能对2号电池组塑料外壳造成热辐射和直接火焰冲击,但由于塑料外壳燃烧性能为B1级,属于难燃材料,直至1号电池组猛烈燃烧后,46.2min时2号电池组边缘外壳塑料出现零星火焰,随后火势缓慢扩大。在外壳燃烧持续高温作用下,2号电池组电池安全阀在61.2~67.4min依次发生破裂。这一阶段出现多次射流火,但电池组整体燃烧剧烈程度较1号电池组低,这是因为未经过充的电池组电量低于过充电池组,总体能量较低所致。由于2号电池组安全阀朝向向上,射流火对3号电池组影响较小,但随着燃烧和热辐射作用的持续影响,75.8min时3号电池组壳体也被引燃,电池安全阀在75.8~81.2min依次发生破裂,随后出现多次射流火。81.2min以后,仅电池残余物仍在燃烧,火势逐渐减弱。


图10多个锂离子电池组燃烧爆炸实验照片


实验后对电池组燃烧残余物的观测可知,电池组塑料外壳燃烧完全烧尽,1号电池组损毁严重,电池组结构完全破坏,电池被冲散,且多个电池壳体破裂,表明实验中多个电池发生爆炸。2号电池组和3号电池组中单体电池基本保持在初始位置且形变较小,安全阀全部破裂。


2.3.2?实验数据分析


多个锂离子电池组燃烧爆炸实验温度变化曲线见图11。3个电池组依次发生燃烧,因而温度曲线呈现出3次明显的峰值。其中,1号电池组从41.6min开始快速升高,在41.6min时达到峰值982℃,此时燃烧最为猛烈。约53.4min时1号电池组燃烧完全结束,随后开始2号电池组的燃烧,并于62.4min时达到温度峰值1096℃,燃烧结束时间约为72.3min。由于3号电池组上未设置温度测点,因而3号电池组发生燃烧时主要从2号电池组上布置的温度测点显现,其最高温度691℃出现在76.6min,之后燃烧逐渐减弱,温度缓慢降低。


图11多个锂离子电池组燃烧爆炸温度变化曲线


3结论


针对锂离子单体电池、不带BMS的锂离子电池组,以2C电流进行恒流过充,研究了单体电池、锂离子电池组的燃烧爆炸及其火灾蔓延情况,得到以下结论:


(1)在以2C大电流恒流过充,且设置较高截止电压(锂离子单体电池37V,锂离子电池组80V)的实验条件下,锂离子单体电池和电池组中的单体电池均可发生爆炸,其中,锂离子单体电池瞬时同时出现安全阀破裂、射流火和爆炸。较大的过充倍率和较高的截止电压可能造成电池火灾爆炸风险增大,因此在火灾防控过程中,需采用可靠的控制手段,防止大电流和高电压对电池自身造成的冲击。


(2)以6.5cm间距布置锂离子电池组后,过充其中一个锂离子电池组引发的燃烧和爆炸可引燃周边其他锂离子电池组形成火灾蔓延。锂离子电池组之间的火灾扩散与安全阀的位置无关,即使不受射流火的直接影响,单个锂离子电池组燃烧产生的辐射热也可促使周边锂离子电池组发生燃烧。为了防止电池组之间火灾蔓延,需采取防火分隔或加大电池组间距等措施。


(3)锂离子电池单体距离爆心45cm处最大爆炸压强为556kPa,锂离子电池组出现多次射流火,形成了多次压力峰值,距离爆心45cm处最高爆炸压强达到915kPa,约为单块电池压力峰值的1.6倍,且短期内频次较高,对周边人员和构件可能造成的损害更大。


(4)锂离子电池和电池组过充实验中,燃烧发生前均可测到电压发生较大幅度波动,可将电压信号纳入电池热失控或燃烧的预警信号,通过多信号融合预警并采取相应的联动措施尽可能防止火灾爆炸事故发生。


声明: 本网站所发布文章,均来自于互联网,不代表本站观点,如有侵权,请联系删除。

相关推荐

#
  • 安全
  • 可靠
  • 环保
  • 高效
  • 高性能

    能量密度:125-160Wh/kg
    充放电能力:5-10C(20-80%DOD)
    温度范围:-40℃—65℃
    自耗电:≤3%/月

  • 高安全

    过充电、过放电、针刺、 挤压、短路、
    撞击、高温、枪击时电池不燃烧、爆炸。

  • 高可靠

    动力电池循环寿命不低于2000次,
    80%容量保持率;
    电池管理系统可靠、稳定、适应性 强,
    符合国军标要求。

Baidu
map